3.97 \(\int \frac{(A+B x) (b x+c x^2)^{5/2}}{x} \, dx\)

Optimal. Leaf size=170 \[ \frac{b^3 (b+2 c x) \sqrt{b x+c x^2} (5 b B-12 A c)}{512 c^3}-\frac{b^5 (5 b B-12 A c) \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b x+c x^2}}\right )}{512 c^{7/2}}-\frac{b (b+2 c x) \left (b x+c x^2\right )^{3/2} (5 b B-12 A c)}{192 c^2}-\frac{\left (b x+c x^2\right )^{5/2} (5 b B-12 A c)}{60 c}+\frac{B \left (b x+c x^2\right )^{7/2}}{6 c x} \]

[Out]

(b^3*(5*b*B - 12*A*c)*(b + 2*c*x)*Sqrt[b*x + c*x^2])/(512*c^3) - (b*(5*b*B - 12*A*c)*(b + 2*c*x)*(b*x + c*x^2)
^(3/2))/(192*c^2) - ((5*b*B - 12*A*c)*(b*x + c*x^2)^(5/2))/(60*c) + (B*(b*x + c*x^2)^(7/2))/(6*c*x) - (b^5*(5*
b*B - 12*A*c)*ArcTanh[(Sqrt[c]*x)/Sqrt[b*x + c*x^2]])/(512*c^(7/2))

________________________________________________________________________________________

Rubi [A]  time = 0.129192, antiderivative size = 170, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.227, Rules used = {794, 664, 612, 620, 206} \[ \frac{b^3 (b+2 c x) \sqrt{b x+c x^2} (5 b B-12 A c)}{512 c^3}-\frac{b^5 (5 b B-12 A c) \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b x+c x^2}}\right )}{512 c^{7/2}}-\frac{b (b+2 c x) \left (b x+c x^2\right )^{3/2} (5 b B-12 A c)}{192 c^2}-\frac{\left (b x+c x^2\right )^{5/2} (5 b B-12 A c)}{60 c}+\frac{B \left (b x+c x^2\right )^{7/2}}{6 c x} \]

Antiderivative was successfully verified.

[In]

Int[((A + B*x)*(b*x + c*x^2)^(5/2))/x,x]

[Out]

(b^3*(5*b*B - 12*A*c)*(b + 2*c*x)*Sqrt[b*x + c*x^2])/(512*c^3) - (b*(5*b*B - 12*A*c)*(b + 2*c*x)*(b*x + c*x^2)
^(3/2))/(192*c^2) - ((5*b*B - 12*A*c)*(b*x + c*x^2)^(5/2))/(60*c) + (B*(b*x + c*x^2)^(7/2))/(6*c*x) - (b^5*(5*
b*B - 12*A*c)*ArcTanh[(Sqrt[c]*x)/Sqrt[b*x + c*x^2]])/(512*c^(7/2))

Rule 794

Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp
[(g*(d + e*x)^m*(a + b*x + c*x^2)^(p + 1))/(c*(m + 2*p + 2)), x] + Dist[(m*(g*(c*d - b*e) + c*e*f) + e*(p + 1)
*(2*c*f - b*g))/(c*e*(m + 2*p + 2)), Int[(d + e*x)^m*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g
, m, p}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && NeQ[m + 2*p + 2, 0] && (NeQ[m, 2] || Eq
Q[d, 0])

Rule 664

Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((d + e*x)^(m + 1)*(
a + b*x + c*x^2)^p)/(e*(m + 2*p + 1)), x] - Dist[(p*(2*c*d - b*e))/(e^2*(m + 2*p + 1)), Int[(d + e*x)^(m + 1)*
(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && EqQ[c*d^2 - b*d*e + a
*e^2, 0] && GtQ[p, 0] && (LeQ[-2, m, 0] || EqQ[m + p + 1, 0]) && NeQ[m + 2*p + 1, 0] && IntegerQ[2*p]

Rule 612

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((b + 2*c*x)*(a + b*x + c*x^2)^p)/(2*c*(2*p +
1)), x] - Dist[(p*(b^2 - 4*a*c))/(2*c*(2*p + 1)), Int[(a + b*x + c*x^2)^(p - 1), x], x] /; FreeQ[{a, b, c}, x]
 && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 0] && IntegerQ[4*p]

Rule 620

Int[1/Sqrt[(b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(1 - c*x^2), x], x, x/Sqrt[b*x + c*x^2
]], x] /; FreeQ[{b, c}, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{(A+B x) \left (b x+c x^2\right )^{5/2}}{x} \, dx &=\frac{B \left (b x+c x^2\right )^{7/2}}{6 c x}+\frac{\left (b B-A c+\frac{7}{2} (-b B+2 A c)\right ) \int \frac{\left (b x+c x^2\right )^{5/2}}{x} \, dx}{6 c}\\ &=-\frac{(5 b B-12 A c) \left (b x+c x^2\right )^{5/2}}{60 c}+\frac{B \left (b x+c x^2\right )^{7/2}}{6 c x}-\frac{(b (5 b B-12 A c)) \int \left (b x+c x^2\right )^{3/2} \, dx}{24 c}\\ &=-\frac{b (5 b B-12 A c) (b+2 c x) \left (b x+c x^2\right )^{3/2}}{192 c^2}-\frac{(5 b B-12 A c) \left (b x+c x^2\right )^{5/2}}{60 c}+\frac{B \left (b x+c x^2\right )^{7/2}}{6 c x}+\frac{\left (b^3 (5 b B-12 A c)\right ) \int \sqrt{b x+c x^2} \, dx}{128 c^2}\\ &=\frac{b^3 (5 b B-12 A c) (b+2 c x) \sqrt{b x+c x^2}}{512 c^3}-\frac{b (5 b B-12 A c) (b+2 c x) \left (b x+c x^2\right )^{3/2}}{192 c^2}-\frac{(5 b B-12 A c) \left (b x+c x^2\right )^{5/2}}{60 c}+\frac{B \left (b x+c x^2\right )^{7/2}}{6 c x}-\frac{\left (b^5 (5 b B-12 A c)\right ) \int \frac{1}{\sqrt{b x+c x^2}} \, dx}{1024 c^3}\\ &=\frac{b^3 (5 b B-12 A c) (b+2 c x) \sqrt{b x+c x^2}}{512 c^3}-\frac{b (5 b B-12 A c) (b+2 c x) \left (b x+c x^2\right )^{3/2}}{192 c^2}-\frac{(5 b B-12 A c) \left (b x+c x^2\right )^{5/2}}{60 c}+\frac{B \left (b x+c x^2\right )^{7/2}}{6 c x}-\frac{\left (b^5 (5 b B-12 A c)\right ) \operatorname{Subst}\left (\int \frac{1}{1-c x^2} \, dx,x,\frac{x}{\sqrt{b x+c x^2}}\right )}{512 c^3}\\ &=\frac{b^3 (5 b B-12 A c) (b+2 c x) \sqrt{b x+c x^2}}{512 c^3}-\frac{b (5 b B-12 A c) (b+2 c x) \left (b x+c x^2\right )^{3/2}}{192 c^2}-\frac{(5 b B-12 A c) \left (b x+c x^2\right )^{5/2}}{60 c}+\frac{B \left (b x+c x^2\right )^{7/2}}{6 c x}-\frac{b^5 (5 b B-12 A c) \tanh ^{-1}\left (\frac{\sqrt{c} x}{\sqrt{b x+c x^2}}\right )}{512 c^{7/2}}\\ \end{align*}

Mathematica [A]  time = 0.305516, size = 166, normalized size = 0.98 \[ \frac{\sqrt{x (b+c x)} \left (\sqrt{c} \left (48 b^2 c^3 x^2 (62 A+45 B x)+40 b^3 c^2 x (3 A+B x)-10 b^4 c (18 A+5 B x)+64 b c^4 x^3 (63 A+50 B x)+256 c^5 x^4 (6 A+5 B x)+75 b^5 B\right )-\frac{15 b^{9/2} (5 b B-12 A c) \sinh ^{-1}\left (\frac{\sqrt{c} \sqrt{x}}{\sqrt{b}}\right )}{\sqrt{x} \sqrt{\frac{c x}{b}+1}}\right )}{7680 c^{7/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((A + B*x)*(b*x + c*x^2)^(5/2))/x,x]

[Out]

(Sqrt[x*(b + c*x)]*(Sqrt[c]*(75*b^5*B + 40*b^3*c^2*x*(3*A + B*x) + 256*c^5*x^4*(6*A + 5*B*x) - 10*b^4*c*(18*A
+ 5*B*x) + 48*b^2*c^3*x^2*(62*A + 45*B*x) + 64*b*c^4*x^3*(63*A + 50*B*x)) - (15*b^(9/2)*(5*b*B - 12*A*c)*ArcSi
nh[(Sqrt[c]*Sqrt[x])/Sqrt[b]])/(Sqrt[x]*Sqrt[1 + (c*x)/b])))/(7680*c^(7/2))

________________________________________________________________________________________

Maple [A]  time = 0.007, size = 274, normalized size = 1.6 \begin{align*}{\frac{Bx}{6} \left ( c{x}^{2}+bx \right ) ^{{\frac{5}{2}}}}+{\frac{bB}{12\,c} \left ( c{x}^{2}+bx \right ) ^{{\frac{5}{2}}}}-{\frac{5\,{b}^{2}Bx}{96\,c} \left ( c{x}^{2}+bx \right ) ^{{\frac{3}{2}}}}-{\frac{5\,{b}^{3}B}{192\,{c}^{2}} \left ( c{x}^{2}+bx \right ) ^{{\frac{3}{2}}}}+{\frac{5\,{b}^{4}Bx}{256\,{c}^{2}}\sqrt{c{x}^{2}+bx}}+{\frac{5\,B{b}^{5}}{512\,{c}^{3}}\sqrt{c{x}^{2}+bx}}-{\frac{5\,B{b}^{6}}{1024}\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx} \right ){c}^{-{\frac{7}{2}}}}+{\frac{A}{5} \left ( c{x}^{2}+bx \right ) ^{{\frac{5}{2}}}}+{\frac{Abx}{8} \left ( c{x}^{2}+bx \right ) ^{{\frac{3}{2}}}}+{\frac{A{b}^{2}}{16\,c} \left ( c{x}^{2}+bx \right ) ^{{\frac{3}{2}}}}-{\frac{3\,A{b}^{3}x}{64\,c}\sqrt{c{x}^{2}+bx}}-{\frac{3\,A{b}^{4}}{128\,{c}^{2}}\sqrt{c{x}^{2}+bx}}+{\frac{3\,A{b}^{5}}{256}\ln \left ({ \left ({\frac{b}{2}}+cx \right ){\frac{1}{\sqrt{c}}}}+\sqrt{c{x}^{2}+bx} \right ){c}^{-{\frac{5}{2}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((B*x+A)*(c*x^2+b*x)^(5/2)/x,x)

[Out]

1/6*B*x*(c*x^2+b*x)^(5/2)+1/12*B/c*(c*x^2+b*x)^(5/2)*b-5/96*B*b^2/c*(c*x^2+b*x)^(3/2)*x-5/192*B*b^3/c^2*(c*x^2
+b*x)^(3/2)+5/256*B*b^4/c^2*(c*x^2+b*x)^(1/2)*x+5/512*B*b^5/c^3*(c*x^2+b*x)^(1/2)-5/1024*B*b^6/c^(7/2)*ln((1/2
*b+c*x)/c^(1/2)+(c*x^2+b*x)^(1/2))+1/5*A*(c*x^2+b*x)^(5/2)+1/8*A*b*(c*x^2+b*x)^(3/2)*x+1/16*A/c*(c*x^2+b*x)^(3
/2)*b^2-3/64*A*b^3/c*(c*x^2+b*x)^(1/2)*x-3/128*A*b^4/c^2*(c*x^2+b*x)^(1/2)+3/256*A*b^5/c^(5/2)*ln((1/2*b+c*x)/
c^(1/2)+(c*x^2+b*x)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x^2+b*x)^(5/2)/x,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [A]  time = 1.84039, size = 830, normalized size = 4.88 \begin{align*} \left [-\frac{15 \,{\left (5 \, B b^{6} - 12 \, A b^{5} c\right )} \sqrt{c} \log \left (2 \, c x + b + 2 \, \sqrt{c x^{2} + b x} \sqrt{c}\right ) - 2 \,{\left (1280 \, B c^{6} x^{5} + 75 \, B b^{5} c - 180 \, A b^{4} c^{2} + 128 \,{\left (25 \, B b c^{5} + 12 \, A c^{6}\right )} x^{4} + 144 \,{\left (15 \, B b^{2} c^{4} + 28 \, A b c^{5}\right )} x^{3} + 8 \,{\left (5 \, B b^{3} c^{3} + 372 \, A b^{2} c^{4}\right )} x^{2} - 10 \,{\left (5 \, B b^{4} c^{2} - 12 \, A b^{3} c^{3}\right )} x\right )} \sqrt{c x^{2} + b x}}{15360 \, c^{4}}, \frac{15 \,{\left (5 \, B b^{6} - 12 \, A b^{5} c\right )} \sqrt{-c} \arctan \left (\frac{\sqrt{c x^{2} + b x} \sqrt{-c}}{c x}\right ) +{\left (1280 \, B c^{6} x^{5} + 75 \, B b^{5} c - 180 \, A b^{4} c^{2} + 128 \,{\left (25 \, B b c^{5} + 12 \, A c^{6}\right )} x^{4} + 144 \,{\left (15 \, B b^{2} c^{4} + 28 \, A b c^{5}\right )} x^{3} + 8 \,{\left (5 \, B b^{3} c^{3} + 372 \, A b^{2} c^{4}\right )} x^{2} - 10 \,{\left (5 \, B b^{4} c^{2} - 12 \, A b^{3} c^{3}\right )} x\right )} \sqrt{c x^{2} + b x}}{7680 \, c^{4}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x^2+b*x)^(5/2)/x,x, algorithm="fricas")

[Out]

[-1/15360*(15*(5*B*b^6 - 12*A*b^5*c)*sqrt(c)*log(2*c*x + b + 2*sqrt(c*x^2 + b*x)*sqrt(c)) - 2*(1280*B*c^6*x^5
+ 75*B*b^5*c - 180*A*b^4*c^2 + 128*(25*B*b*c^5 + 12*A*c^6)*x^4 + 144*(15*B*b^2*c^4 + 28*A*b*c^5)*x^3 + 8*(5*B*
b^3*c^3 + 372*A*b^2*c^4)*x^2 - 10*(5*B*b^4*c^2 - 12*A*b^3*c^3)*x)*sqrt(c*x^2 + b*x))/c^4, 1/7680*(15*(5*B*b^6
- 12*A*b^5*c)*sqrt(-c)*arctan(sqrt(c*x^2 + b*x)*sqrt(-c)/(c*x)) + (1280*B*c^6*x^5 + 75*B*b^5*c - 180*A*b^4*c^2
 + 128*(25*B*b*c^5 + 12*A*c^6)*x^4 + 144*(15*B*b^2*c^4 + 28*A*b*c^5)*x^3 + 8*(5*B*b^3*c^3 + 372*A*b^2*c^4)*x^2
 - 10*(5*B*b^4*c^2 - 12*A*b^3*c^3)*x)*sqrt(c*x^2 + b*x))/c^4]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (x \left (b + c x\right )\right )^{\frac{5}{2}} \left (A + B x\right )}{x}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x**2+b*x)**(5/2)/x,x)

[Out]

Integral((x*(b + c*x))**(5/2)*(A + B*x)/x, x)

________________________________________________________________________________________

Giac [A]  time = 1.15702, size = 267, normalized size = 1.57 \begin{align*} \frac{1}{7680} \, \sqrt{c x^{2} + b x}{\left (2 \,{\left (4 \,{\left (2 \,{\left (8 \,{\left (10 \, B c^{2} x + \frac{25 \, B b c^{6} + 12 \, A c^{7}}{c^{5}}\right )} x + \frac{9 \,{\left (15 \, B b^{2} c^{5} + 28 \, A b c^{6}\right )}}{c^{5}}\right )} x + \frac{5 \, B b^{3} c^{4} + 372 \, A b^{2} c^{5}}{c^{5}}\right )} x - \frac{5 \,{\left (5 \, B b^{4} c^{3} - 12 \, A b^{3} c^{4}\right )}}{c^{5}}\right )} x + \frac{15 \,{\left (5 \, B b^{5} c^{2} - 12 \, A b^{4} c^{3}\right )}}{c^{5}}\right )} + \frac{{\left (5 \, B b^{6} - 12 \, A b^{5} c\right )} \log \left ({\left | -2 \,{\left (\sqrt{c} x - \sqrt{c x^{2} + b x}\right )} \sqrt{c} - b \right |}\right )}{1024 \, c^{\frac{7}{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((B*x+A)*(c*x^2+b*x)^(5/2)/x,x, algorithm="giac")

[Out]

1/7680*sqrt(c*x^2 + b*x)*(2*(4*(2*(8*(10*B*c^2*x + (25*B*b*c^6 + 12*A*c^7)/c^5)*x + 9*(15*B*b^2*c^5 + 28*A*b*c
^6)/c^5)*x + (5*B*b^3*c^4 + 372*A*b^2*c^5)/c^5)*x - 5*(5*B*b^4*c^3 - 12*A*b^3*c^4)/c^5)*x + 15*(5*B*b^5*c^2 -
12*A*b^4*c^3)/c^5) + 1/1024*(5*B*b^6 - 12*A*b^5*c)*log(abs(-2*(sqrt(c)*x - sqrt(c*x^2 + b*x))*sqrt(c) - b))/c^
(7/2)